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ABST CT
TS

In the previous report ( ' ) , the fundamental equation that

describes limit cycles in nonlinear sampled-data systems has

been derived. In that case, the equivalence of limit cycles with

finite pulsed systems having a periodically varying sampi ing-rate

is observed, and the methods of analysis applied to the latter are

extended to obtain these limit cycles with the aid of final value

theorem.

This fundamental equation is modified and is simplified to
some extent under certain assumptions as it can be applied to

systems both with and without integrators. The limitation on

the longest period of saturated and unsaturated oscillation is in-

vestigated and the critical gain for their existence is derived,

starting from the modified fundamental equation. Also, the stability

of limit cycles as well as the equilibrium point is considered, based

on Ne&ce's method and its modification.

Through this study, various kinds of non-linearities, namely,
pulse-width modulation, relay saturating amplifier with linear zone
and quantized level amplifier are discussed, and examples are

presented for each of these cases. Self-excited oscillations are

mainly examined, as well as the possible existence and stability of

limit cycles, however, the method can be extended to forced

oscillations.

Finally, experimental works are performed in order to verify
the theoretical results by means of digital computors.
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CHAPTER 1

Introduction

Nonlinear sampled-data feedback control systems have been

extensively investigated in recent years (Fig. 1). One of the most

important topics of these studies has been the stability problem of

such nonlinear sampled-data systems. Lyapunov's second method

has been introduced as a powerful tool for the analysis of the stability

problems. 4, 5,6 At the same time, the classical describing-function

method has been used in analogy with the case of nonlinear continuous

systems.

Amongthe various types of nonlinearities the pulse-width modu-
8lation has been studied by such people as R. F. Nease , R. E.

Andeen,, 10 E. Polak," T. T. Kadota, 6 W. L. Nelson, 12 Shao Da
13 14 1, 2,3

Chuan, 1I. V. Pyshkin, and E. I. Jury and T. Nishimura

For example, R. E. Andeen 9 ,10 presented an approximate method for

the analysis by replacing the pulse-width modulator by the equivalent

pulse-amplitude modulator. Hence, his method is restricted by the

small-signal condition because of that approximation. On the other

hand, Shao Da Chuan 13 gave an exact analysis of the limit cycle in the

PWM system using the canonical-form expression. However, his

analysis is limited to the limit cycle of two sampling periods. I. V.

Pyshkin14 presented an extensive method to prove the existence of

limit cycles in PWM systems, but still he had to resort to certain

approximation using the low-pass characteristics of the linear plant

and the stability problem was not substantially attacked.

T. T. Kadota 6 applied the second method of Lyapunov for the

stability discussion and succeeded in deriving a sufficient condition for

asymptotic stability in the large of PWM systems, although his condition

was rather conservative compared with the actual stability condition

obtained experimentally.

E. I. Jury and T. Nishimura 1, Z, 3 derived a method to find the

exact behavior of limit cycles in PWM systems extending the theory

of the periodically-varying finite-!pulse-width systems. Also, they

discussed certain features of the stability of such systems in connection

I
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with the stability of limit cycles when they are in the simplest form,

namely, of the two sampling periods.

In this report, the method introduced in the above references

is extended and simplified in its form. Hence, this report is in

direct continuation with the previous one (1) and further detail of

that report will be summarized in the last part of this introduction.

The main subject of this report is the stability problem of

PWM sampled-data systems. By the Lyapunov-function method one

attempts to find the Lyapunov function which is positive definite and

is decreasing for every sampling instant. In order to find such a

general function one has to expect the worst case might happen,

without paying attention to the various features of disturbances within

the system. This fact leads to the result that the sufficient condition

derived by this method is often excessively conservative, as is seen

in the case of Ref. 6.

In contrast to such a comprehensive, macroscopic method, we

adopt the microscopic method in which we start by separating the

possible modes of oscillation into the adequate categories, then

analyze the stability of oscillations of each category from its simplest

mode and forward the analysis until we cover all the possible modes

of oscillations.

This laborious work may appear almost prohibitive in its

beginning. However, by finding the certain regularities which govern

such oscillations, we can achieve the precise analysis of the stability

problem. This is the basic attitude of this report towards the

specified problem.

In Chapter Il the simplified form which yields the feature of

limit cycles will be derived and this equation will be extended to include

the system which contains pure integrators.

In Chapter III we will derive the nethod to find the longest period

of limit cycle of relay mode oscillation. Then we will discuss the

stability boundary for the relay mode oscillation. The same technique

will be extended to unsaturated oscillation as well as to other nonlinear

systems.

In Chapter IV the stability of the equilibrium point will be in-

vestigated and final conclusions will be derived on the stability of the

PWM sampled-data systems.



Review of the Previous ReportI

We present a short review about the content of the previous report

entitled "On the Periodic Modes of Oscillations in Pulse-Width Modulat-

ed Systems"I and reproduce those equations which will be used in this

report. The scheme of the PWM system is shown in Fig. 2. The PWM

controller (lead type) has such characteristics that its output is a unit

pulse (positive or negative), the sign of the pulse is identical with the

sign of the control error at the sampling instant (e n(0)) and the pulse

width is proportional to the magnitude of e n(0).

Since the sampling period T is fixed, the maximum pulse width

is T and the saturation will occur beyond this point. Then the output

of the PWM controller during the (n+l)th sampling period will be given

by the product of the sign function y(n) and the unit pulse function uhtt).

The origin of the time axis t is placed at the nth sampling instant.

enh(t) = (n)uhtt) (1.1)

where

e n(0)(n) - n (1. 2)

and this takes only +1 or -1.

uh(t)= for 0 < t<h (1.3)

= 0 elsewhere

Also the pulse width is given as follows:

hn = a Ien0O)j for 0 < a en(0) < T
(1.4)

= T for a I en(0)1 > T

where a is a gain of the PWM controller. The incremental response

ACn (a) is defined as the product of the transfer function KG(s) and the

Laplace transform form of the pulsed output enh(t) from the PWM

controller

ACn(s) = KG(s)EZ(s)

4
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where -h,.
Ih(,) e ~h~t- - e (1.6)

Then the incremental response of each limit cycle is given by the

summation of ACn (a) during one limit cycle, multiplied by the relative

delay factor

M-1

AC$(s) = I AC(s)e -1 ST (1. 7)

1=0

The z-transform of this becomes
M-1

AC:(z) = z" AC;(Z) (1.8)

1=0

Applying the skip-sampling1 6 operation to &C*(z) yields the incremental
a

response at the instants 0, TG, ZTG, ..., where T G = MT, the period

of the limit cycle:

AC88(Z) = zs[A c(z)] (1.9)

Then it is shown that the response at the beginning of the limit cycle is

obtained by adding AC*(Z) for all the periods of limit cycles and by
a 17applying the final value theorem to the summation. In this case, it

is assumed that KG(s) has no integrator in order to insure the convergence

of limiting process.

Thus the final result is derived as follows:

c08 lini AC8,(Z)
Z 41

0lim zi ..LKG(s)Ejla(s)J (1.10)
Z41 30

This equation can be applied for any type of nonlinearities. In the case

of the PWM system, Eih(s) in the above equation is replaced by Eq. (1. 6).

6



Ex. (L. 10) can be extended in general form to give the response at the
jth sampling instant of the limit cycle.

c = lir AC# (Z)csZ-J) 1 3

M-1

lir Zs z z' [ KG(s E'th(s)] (1. 11)
Z41

since AC.* *Z) = Zs[ z j Ac (z)] (1.12)

When KG(s) has an integrator, the problem is solved with the aid of

difference equations.

Using these equations, the limiting cycle of M = 2 and M = 4 are

analyzed in the examples of the previous report I and the existence of

limit cycles of the PWM mode and the relay mode as well as the stable

region is indicated. Also the critical gains for each region are specified

for the limit cycle of M. = 2.

In the appendix, the stability of the limit cycle is discussed, which

is another important problem of the limit cycle as much as its existence.

The discussion is based on the important theorems given by Nease. 8

The definition of the stable limit cycle is given as follows.

DEFINITION: A limit cycle is said to be absolutely stable if any

small perturbation about the limit cycle approaches 0 as n -) 0o.

Then two theorems are referred to which present the method for

testing the stability of limit cycles.

THEOREM 3. Assume that the nonlinear difference equations

Xn+ l ] = F(Xn)] (1.13)

have a periodic solutions Sn] of period M, and that the functions F(X n)

are single valued and possess continuous first partial derivatives. The

first approximation of the difference equation for small perturbations

about this periodic solution S n] is

n+ 1] = [A] (1.14)

7



and the solution of this equation determines the stability of the periodic

solutions Sn] if [ An] is nonsingular at all of the solution points. In the

above equation Y n] is the perturbation about S n] and the components of

[An] are

aij, n = aFi(X n)/BX

xn = S (1.15)

THEOREM 4. The system of Eq. (1. 12) is stable if all the eigen-

values of the matrix

[AG] [An+Ml1][An+M-]"' [An] (1.16)

lie inside the unit circle. Then all the solutions tend to 0 as n becomes

large.

'rheorern 4 of Ref. 8 is partially stated in the above, considering

only the necessary part pertinent to this discussion. Combining these

two theorems, the condition for the stability of limit cycles will be

reduced to the following statement that "all the eigenvalues of the

matrix [AG] which consist of the first partial derivatives of

F(X n) lie inside the unit circle at all the periodic solution points

S n]. " With this condition satisfied, the small perturbation will tend

to 0 as n -4 co, hence the limit cycle is said to be stable according

to the definition of previously defined stability of limit cycles.

8



CHAPTER 11

Modification of Fundamental Equation for Limit Cycles

The general form of the equations which give the response at the jth

sampling instant of the limit cycle in the nonlinear sampled-data system has

been derived in Eq. (1. 11 4. It is assdmed that KO(s) has no poles at the origin.

Certain modification of Eq. (I. i)) is attempted in the following part.

Since the content of the skip-sampling operator Z* ] is a function of a, i. e.,

a sampled function with the period T, the operator Z5 samples the sampled

function of T with the period TG a MT. Hence this sampling process is redun-

dant and the first sampling process with period T may be removed. For that*
purpose, the content of the Z5 operator, i. e. , AC *(s) shall be modified

a js
in such a way that AC js(a) contains the incremental response of one period

of limit cycle preceding the jth sampling instant. Hence, the new incremental

response &C 5(z) is described as follows.

Sc ss) -s~ [Ods)E 4l.)]
I0

i a 0, 1. .. ,M-I.

It is understood that the system has already been on the limit cycle, hence E+

has the periodical feature with the period TG.

E'+i~h(s) a Ejsi.M.h(s) when I +i> M C.21

. ;.
Substituting ACis(s) for &C (s) in Eq. (1. 11) yields the desired res'ponse at the

je
ith sampling instant.

c = tim z [ACis(s)]Z -41

Slm a* s.l 3, LKG(sE ihS)]] (.;a.:..i)
Z 1 --*I

i a 0, 1, .. M. * -I

Inverting the content of the Z operator to the function of s, and replacing the

skip sampling operator Za by the ordinary ),operator with the period T-,
the above equation becomes as Eq. (.-4), given below, where Z a •M e

9



is multiplied to the content of the bracket while Z "1 Is multiplied to the outside

of the bracket.

c U rn 0 UT l s
isl"..al T G 0eMaT KG(s) Z ; . h(u) *l

zMp KO gel (OpTtk

MpTKQ(p) i, h(p)

8-4 0 TM~sPZ -* r~. so~ 1 0d

1.01, ... , -I (2.4)

The multiplication of eM eT to the content of the bracket is done to ensure the
convergence of the integrand to sero along the infinite semicircle on the right-

half plane, and this does not cause any change in the final result u der the

condition that Z - 1.

The limiting process s -b 0 may be performed before the istegration if

the path of integration r along the jw axis is taken sufficiently close to the
imaginary axis of the p-plane. Hence. Eq. (2. 4 ) is reduced to

M-I
aeMpTKXG(p) 1~ 01PT Z,+ihp

C i . sY 111, dp ( .. )

This is the modified form of Eq. (Z. I ).

Further simplIfication is possible when the oscillation is symmetrical and

monotonic. The symmetrical oscillation is such that the same shape of oscilla-

tion is repeated for every half period of the limit cycle with an opposite sign.

The word monotenic in this case implies that the input ej e(t) to the noalinea&r

component is positive for the first half period of the limit cycle ad is negative

for the other half period. These conditions are expressed mathematically

as follows:
Letting M a Zi& (p a number of samples in half period of limit cycle)

10



a as , fora ., 1,..., a ( z.6)

and

+,() -I forl-o, , ... I- .

Y(U) 0 -1 for 0 JL ,+I, ... , M-l

The above assumption Is justified in moot of the cases in practice because the

linear plant usually possesses the low-pass characteristics, which render
the oscillations smooth ad monotonic.

Also it is emphasised that the assumption of symmetry is placed on the

input of the linear plant, as in Eq. (H:6.), not on its output. Hence, the asym-
metrical oscillation with reepect to the plant output. as observed in the second-

order relay system, (Fig. 9'of reference 1) is still the symmetrical oscillation

'with respect to the plant input and satisfies the condition ofEq ( 2. 6)

Since

+Pj.h(,) u -Z) ( z.8)

Eq. (. .) is rewritten as follows

e alIPT O~ ) ' PT ,o jp
G +. h( p ) ( " - )

ci 1 i a TTa 0 dp

OIPpT KC(p) 0-9I pTl PEj'+1 hlp)

ln2 S .. dp (z.9 )B-77 f I + •a P W

Thus, half of the orse of the denominator of the integrand. which includes the

nero at the origin, are cancelled by the nOros of ( 1 eIPT) In the numerator
by introducing the condition of symmetry and mosoteascity of

11



oscillations. + This elimination of the pole at the origin yields a great contri-

bution for the analysis of systems with integrators which shall be developed

in the following part.

Equation (2. 10) will be rewritten for the case when the function of the

nonlinear component is the pulse-width modulation. Then.

- sh9
EI~) 1 1- e (2.11i )

where y(f) is specified by Eq. (1. 2 , and

h. 6le,(o)l

a I r(0) - co(0)I (2.12)

Substituting Eq. (2. IL) into Eq. ( Z. 10) yields

ci ' S eKGp) 2-11 + ie -8 PT (- ph+i dp (2.13)

r t=0

So far, it is assumed that KG(s) has no integrator. The problem of KG(s)

+ The conditions of symmetry and monotonicity are the sufficient conditions for
cancelling the pole at the origin of the integrand of Eq. (2. 06), but are not the
necessary conditions. Actually, the condition of monotonicity is not required at
all in order to cancel the pole at the origin. Only the condition that every eh(0)
in one limit cycle have its pair of the same magnitude, but of opposite sign,
in the same limit cycle, is required for that purpose. In special cases, this condi-
tion is further reduced to that the summation of ejh(0) is equal to sero, as in the
case of the quanitsed level amplifier.

For example, the four-period limit cycle of 1. k, -k,-l, I kJ < 1, which is
shown in the example of Ref. 19 for the saturating amplifier system, satisfied the
above condition.

However, this does not assure the existence of such limit cycle as shown
in the same reference in which the existence of the above limit cycle is denied.
Moreover, the stability of such asymmetrical, non-monotonic limit cycle is
quite dubious, as is noticed in the experimental observation. Therefore, the
introduction of the assumption of symmetry and monotonicity is practical when
the linear plant has the low-pass characteristics, as in most cases. Also, we
emphasise that this assumption does not introduce any approximation for the
analysis at all.

Iz



with integrators will be discussed in the following part.

An example of second-order system with a single intograter is solved in

the previous section with the aid of difference equaties. The reason for the

difference equations being used in addition to our fundamental equation Is that

the pole at Z w 1 which originates from the single Integrator of the plan makes the

application of the final value theorem impossible, since when Z approaches unity

the term AC (Z) would diverge because of the pole at Z u 1. This fact cam also
be observed when we take a look at the modified equation (3.4 ).

When the integral is evaluated by the residue method for all the poles of

KG(p), the term I - e " M T(s-p) causes the integrand to diverge whoa the residue

at p a 0 is evaluated, and when s - 0 and this does not give any finite value for

the residue.

However. if the condition of symmetry and monotomicity is introduced to such

a system, this troublesome pole at the origin is eliminated as s -0 0 and the

evaluation of the residue at the origin becomes possible. This is seen in Eq.

in which the pole at the origin of the integr&and has already been removed.

Therefore KG(p) may contain not only a single integrator. but als, a

double or triple or any higher order of integrator at the origin. And it is

proved that the simplified equation (Z. 10) is valid fe ay shsps of this ptao

KG(s) i it satisfies the physically realizable condition under the assamptiom of.

symmetrical a" monotonic oscillation. Also, Eq. (L- 16") is applicable for any

type of nonlinearities if the output en(t) of nonlinear element can be specified

as a function of the input and output of the over-all system.

We have derived three fundamental equations for limit cycles in this

chapter, as shown in Eqs. (1, % (2.5), and ( L. 9). We will explain briefly

the advantage and disadvantage of using each of these equatios.

The first equation of Eq. (i. U ) has the disadvantage of having two kinds

of s-transformation, namely, the s-transformation with respect to T and the

skip-sampling operation with respect to T . However, in actual calculati s, we

can perform the skip sampling operation by picking up the necessary terms mA

of the expansion in powers of o 1 without carrying over the integratlon of sazpl-

Vi~IVWO r~~~a wwh -#*a~w fuctd of z, not of a.



The second equation of Eq. (2. 5 ) may be used in most cases except

when the system has digital processing units. However, we must be careful

in carrying over the integration because the integrand contains the delay factors

in the form of - pT and more labor is required for the computation.

The third equation of Eq. (2. 9 1) is useful when the oscillation is symmetric

and monotonic, and is the most convenient form among these fundamental

equations. When these assumptions are violated, as observed in the examples

of the quanitzed level amplifier of Section 2. 2, (3), we have to use either

Eq. (1. 11) or Eq. (2.5 :).

When the plant has an integrator, Eq. (2. 5 ) or Eq. ( 2. 9-) can be used

although they give only the oscillations of sero D. C. component. + In case the
oscillation of non-sero D. C. component is desired or the values of derivatives of

responses are required, the difference equations are very helpful as shown in

section V of referencte 1.

Example 2. 1

The equations which yield the solution for this symmetrical PWM mode

oscillation are illustrated in this example.

The plant is chosen as second order and the period of the limit cycle is

k4 = Z . sampling periods.

KG(s) =(I K (2. 14.)

In Eq. (2.13), let i a 0 and take y(Iii) a y(f) a +1 for all 1, referring to

Eq. (#2. 7 ). Hence Eq. (2. 13) becomes as follows.

+ D. C. component implies the average value of responses at the sampling

instants during one period of limit cycle.

14



* IL pT I '(P T dp
02 J • pbpr) PUT p

r too

hO hT *h00.-Il)bT b 1 .
.ijK 0 e (e .1) +. +..

-; r+ b(1 +

h 1 e-bT h4 1 (2.15)
b(l + •"jPbT )

Multiplying -a to both sides of the above equation and knowing h 0  g- g

the following equation is derived:

ho  K "a , (2.16-)0Tw bil + •"* b T )

For i q I, it is observed from Eq. ( 2. 7) that

Y(1+)a +1 fort -0,1, .

a -I for * •i-l (2.1)

and

Hence, hIL( -. Cls) is obtained in a similar manner

&K 2 r[hfi+l .- (pt.f)bT (01 b+1.1)tob(l + P"or  1

ebT(bb .@

14- b(I+ e p DT(2.18)

In general.

Y(Lfi) u+l forE I 0, 1, ... , u-1l
• -I fori Ia -i, i&-il.. .- 9

15



and

h~"~ol+i • i.

Then, using theme results

SK W- i (pI)bT is • g T)

b (l + .i ) j

00*(P.U)bT 1$ +.*

i a O, 1, . .l.

The solutions of the equations which are given by 10U. (z. 20) for 1 0, 1, ... psi

yield the exact feature of the PWM mode osculation that wUil be sustained

within the closed-loop PWM sampled-data system. Althmgk the inmorical

solutions of these transcendental equations are not easily obtaited when p Z 3,

certain approximatioas for the exponential terms are possible, as dticaseod is

the previous section. Also the programming eM the high-speed digital Oompsor

will enable us to solve these equations without appreulmatios %hoM the system

constant, the sampling period, and the system gala. are speeied.

16



Example 2. 2 Quantised Level Amplifier

In this example, the nonlinear gain amplifier has a characteristic

of quantised level (2 levels) as shown in Fig. t3).

This characteristic is represeaed as follows.

e1(t) a I if d -4( )

a 0.5 if d/Z 4 en() - d

a 0 if *4/2,C en(0) -dI (2.21)

a -0.S if-d - ea(0) < -d/a

a-I if en(O) C -d

where ad a I

The linear plant is again second order given by Eq. (2. 14).

We will demonstrate the existence of asymmetrical oscillation with the

period of three sampling periods.

For such an asymmetrical oscillation, Eq. (2. 5 ) must be used.

Letting M a 3, and it is assumed that the output of the honlinear component has

a sequence of +1' 0, -1, hence -(O) = 1, 1Z) a .1. Substituting these values

into Eq. (2. 5), together with Eq. (. 21 .), yields

X . I -e-At T

c of b* + ObT +0 b (2. 22~)

C is T bl + b •T + "' ST (2.23)
X l ' bT  ( 2.Z3T

8 9. b(l+ - bT+ Os" DT ) ]
* ~ STZT ](2.24,)

The sability of this limit cycle is tested by the method which is
described in Chapter I1 as well as by the digJitl computor experiment.
It is found that this limit cycle is unstable and will move to the relay mode
oscillation of Id a 4.

17
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When T u 2, b 1, K. a1 and d z 11 3 (a =3), those values are calculated

as follows.

C is 0. 083

cs 0.565

The output of the quantised level amplifier corresponding to c 0 4 is +1' 0

for c Is, -l1 fore..., which satisfy the original assumption of the sequence.

This asymmetrical limit cycle is shown in rig. (41~.

Another example of an asymmetrical limit cycle will be demonstrated

for the same system a the previous example. except that d a 1/2 (anZ)

in this case. The sequence of the output from the nonlinear component is

assumed as +1, 0, -1/2, 0, 1/2, 0, -1, having seven samples ia one period

of limit cycle.

Again Eq. (2. 5 ) is used for the analysis of such asymmetrical

oscillation. For example, the response at the first sampling instant of the

limit cycle is given by

c K [5T (I- -bT )2- bT + .4bT - 24bT~

o f 'S T Z b ( l e ' T )
W -0.5S71 (2A)

Similarly, the responses at the other sampling instants of the limit cycle
are obtained as follows.

c i 0.178 c 2 2 0.470 c 3 a *0.011

C 4s -0. 371 C * 0.147 c6 s 0.514

Applying these values of responses to Eq. (2.,21 -) (letting onto) a. C cRIO)).
we find that the assumed sequence will be reproduced from the aemilinear

gain amplifier and such a limit cycle will be maintained. The feature of

this limit cycle is shown in Fig. I(5). These two limit cycles are proved to

be stable limit cycles by the digital computor experiment.
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CHAPTER III

ANALYSIS OF SATURATED AND UNSATURATED OSCILLATIONS

AND THEIR STABILITY BOUNDARIES

In the previous chapter, we have derived a fundamental equation to

trace the exact behavior of limit cycles which are sustained within the

nonlinear sampled-data systems. We have also domemostrated that such

oscillations can be eliminated by reducing the gain in PWM systems whoa

they are in the simplest mode. However, the problem of finding the gain

boundary to eliminate all the possible limit cycles riqktires an enormous amount

of work.

But we will proceed to solve the stability problem in this chapter by

the localized approach to saturated and unsaturated oscillation in PWM

systems.

3.1 Limitation on the Period of Limit Cycles of Relay Mode Oscillations

It has been observed that there exists a certain limitation oan the

longest period for the limit cycle which is sustained within the autoamoss

relay sampled-data system. Inawa &M Weaver 2 discussed this problem

on the second-order system and derived an equation which gives the maxi-

mum half period of limit cycle as a function of the sampling period, intro-

ducing a fictitious delay to the sampler. Also Pyehkn 1 4 treated the same

problem using the describing-function method.

We will show that this problem can be solved for any order of the

linear plant without any approximation. Under the assumption of symmetric

and monotonic oscillation at the output of the nonlinear component, which

is an ideal relay in this case, Eq. (2.13) is valid for the relay mode oscillation

if all hi +i are replaced by the sampling period T. Hence

a 0 1 *OPTSao1 ) g(Q'i)*'"PT -0"OPT dp (3,1)

r a80



It is to be recalled that the output of the nolimear elemeteo aM is

positive for the first half period and negative for the other half period.

This implies that the response c, o(O) is megative for the first half periwd

and positive for the other half if the nonlinear cemponent such as relav

PWM, or saturating amplifier has mo hysteresis In it (n input is assu*ed).

Therefore,

*(t) +1 forl -0, 1. ... 0L.0
(3.3)

1 for A p, i+l, ... , M-I

and
c 1 5 (0 for Aa0,1, ... psl

(3.3)
Cis> 0 fori I p, p+l, ... , Mal

Then the maximum number pmax of sampling periods in the half period of

limit cycle is easily ebtained by investigating the polarity of c .1, a .

which is the response at the last sampling instant contained in the first half

period of the limit cycle, and is given by Eq. (3. 1), letting I a p-I in ito

OT I + pPT  pmPlsJ

r Is0 (3.14)

Since cog Is negative by the original assumption, the polarity of c- 1

is tested starting from P 2., i. e.. from Cie. c, •1 m ay be

negative up to a certain p p ', but may become positive for all p p'+l.

In that case this critical p' is taken as Omm since • mut be

negative by the original assumption, and whenever this assumptios is

violated we may conclude that such limit cycle with the haf period pT

cannot be sustained In that system.

This conclusien will be Illustrated for first-order ad secod-o'der

plants in Examples 3.1 and 3. 2.

W tsmhle 3.1
When the planit tramefer functiem is first order, givens by



KG(s) K (3.5)

The response a at the margin of the first half wave is similarly

obtained. Letting i p -I in Eq. (2.19)

1( l + ) + 4 1 f o r I = 0 (3. 6)
.1 fora 31, 2, ... , 0 0-

and

Coo CIO ... , C 0

Hence Eq. (3. 4) becomes

1 + ()ApT P - pT dp
*~~ I.~ + ep (Ie )(iT- PT~

(L - T I + e'bT + +e ( .Z)bT -e(-1)bT]  (3.8)

It is clearly observed that cL- 1 8 is positive for all pt 2, violating the

original assumption of Eq. (3. 7). Therefore it is concluded that the first-

order relay sampled-data system can maintain only the relay mode oscillation

of two sampling periods (p a 1) and that the longer period oscillation cannot

be sustained in that system. The above statement is true for any plant gain

If plant time-constant b, and sampling period T.

Example 3. 2

Next the case of the second-order system with an integrator will
be discussed. The plant transfer-function is given by Eq. (2. 19 ).

Then, letting all hi +i -a T in Eq. (2. 15) of Example 2. 1 yields a

set of solutions Coa, CIs, ... , c- 1 , for the responses at all sampling

instants.
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C s U- o (T ;Io)bT(1  . bT)
cK io T.0 bIt + 0~ T

I T 0#- l)bT( b (3.9)

b(l + e "F JJ
For p I and i Pl1  0

r- 1 bT 1  K bT(l+eabT ) -  -bT)
bX T e 1 Tl+.A(

"~ b( + a ')J ""+.

(3.10)

It can be easily proved that the numerator inside the bracket is positive for
all bT -- 0. Hence it has been shown that C0 is negativ% for all T.

Then for IL a 2 and £ IL-i a I

K (< bTZ 0 (3.11)C~o "'T I + e -' Z T

Therefore, Cl is negative for any sampling period T.

Next for IL 3 and ia IL- 1 2 in Eq. (3.9)

K (I e (1 + -bT - 2bT) 1 (3.12)

Simple trial will show that c Z is negative for small T, but when T becomes
larger c25 will become positive, violating the original assumpties. Thus

we can find a certain critical T€ bu spiving Eq. (3. 12) for T when c 2 is

equated to zero. Then the oscillation of p a 3 or N a 6 can exist for

T < Tc but it cannot be sustained for T * T c .

A similar phenomenon is observed for larger i. Here we may derive

an equation which yields the relation between the maximum IL ad the

sampling period T. Letting I a i -l in Eq. (3.19),
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bI

[C T e" -9 bT U OubT

Ju 7 + a)e b 
.11bT

finding the maximum p& which satisfies the following inequality

-T - ) b T  I - • "jpb T  bT
b+ b "t b T  + -1 < 0 (3.14)

Thus we are led to the following interesting conclusion, that the limit cycle

of two sampling periods and four sampling periods can exist in the relay

sampled-data system for any sampling period T, but that for IL > 3 the

maximum number of sampling periods which can be contained LA one limit

cycle is restricted by certain conditions that are specified by the system

constant b and sampling period T, as shown in Eq. (3.14). pmax as a

function of the sampling period T is plotted on Fig. tg).

The discussion and conclusion so far can directly be applied to the

relay mode (saturated) oscillation in PWM systems. The fact that there

exists a limit on the period of the limit cycle for the relay mode oscillation

must be remembered and this will be very useful in stability discussion of

PWM systems that will be given later.

3. 2 Gain Boundary of Relay Mode Oscillations in PWU Systems

It is observed in Section IV of reference I that the oscillation

will be shifted from the PWM mode oscillation to the relay mode

oscillation when the over-all gain aK is increased, because of the

saturating characteristics of pulse width modulator. The critical

gain between these two. 'modes is denoted as aK and is obtained for5
the limit cycle of two sampling periods in Section IV of reference I.

It is not a difficult problem to obtain the critical gain for longer periods,
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I

since we have already derived the general equation for the PWM mods
oscillation in the previous section., The tramlities will occur when all

pulses hi of each sampling period reach saturatiem ad 1il every sempling

period of limit cycle. However, we have derived the eqtt~iea. of c as a
function of aK in Eq. (2.t3) and we know for the autoomems system that

h i  a -6c is t a 0, 1. ... , 0 ,-1 (3.13)

when the period of the limit cycle is chosen as ApT. Then the critical

gain a Xa is given as such a gain that every hi becomes simultaneously

equal to T on both sides of Eq. (2. 1); thus the sum of hi for the half period

becomes equal to the half period t&T.

Combining Eqs. (2.13) and (3.15) and letting h-- T yields

laO h 1 T Ie
h-- T hi --- T ci

• 2 S , 1.0 dp

oR (PX pC ePT) ( *,W~p ~ (~(Ih'Il)0PT ) 3 6

o .. dpior (I + QILP)
TV ( + Ol p  )p

Taking out the terml under the double summaion inside the bracket of the

integrand and denothl)g this as f(p, pT), we have

f(p, pT) a - ,'. j),(W.)IlpT

i=O fe0

* - e *(I-R -O)pT 1 i) 5.1 )

too iao
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Actual values of j( +i) are given by Eq. (2. 1q). Substituting their values
into the above yields the general form of f(p, pT) as follows

fbipT) a pA o Z+ ( - 4)e p T  + oP 6)e Zp T + . . - ) (p°-Z ) pT

. ILe(IL- I~p T  (3.16)

Denoting the gain which satisfies Eq. (3. 15) as aKs() it is siven by

oKI) T. (3.19)

' ]-S G(I e)f6LPT) dp
r p(l + s PT )

It must be pointed out that the assumption of the simultaneous
saturation of the pulse width hi is not practical except when i a 1, since
the wave shape of the response may become somewhat like a sine wave,
but may not appear like a square wave. Therefore most of a I cisI becomes
larger than T when all the pulse widths are saturated, so the left hand side

of Eq. (3.16) may be larger than pT.
Hence, a S (p) which is derived from Eq. (3.16) must be itegarded

as the lowest gain that might allow the existence of the specified saturated
oscillation; it gives the sufficient condition for the non-existence of the
specified saturated oscillation. Also it may be regarded as the critical
gain when the square wse assumption is introduced as explained later, then
it gives approximately the gain when the average of a I ci. is equal to T.
The above equation, Eq. (3.19), shall be applied for the cases of the first-
and second-order systems in Examples 3. 3 and 3. 4.

Example 3. 3

In the first place, when the transfer function of the plant is the first
order, given by Eq. (3. 5), and when& I 1, aK5 is easily calculated as
follows:

fAIpT) ' -1 for a 1 (3.20)

Hence, by Eq. (3.19)
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T 1bT + bT

S dp (3. 21)

(r T )p p dp

Example 3. 4

When the plant is second order, given by Eq. (2. 14), the integral
of Eq. (3. 19) is first evaluated as follows

rL" r + etPT  pz(p+b)

1 + 2(- e*bT) f(,A -bT) (• T ~i+ -e 6.-a 1 (3.22)
Zb I 1+

where f(p, -bT) is obtained by substituting -bT for p in Eq. (3.181. Substituting
this into Eq. (& 19) yields aK. as a function of L:

Zb2 PT(1 + -bT (3. 23)
0~J) bpT(l + e•" bT) + 2(1 - e bT ) f (p, -bT)

a KI is actually calculated for pi m 1, 2, 3, 4 as follows

"Ks (l) a bZT(l + e-bT)-- (3. 24)

bT(l + •-bT) - 2(0-(3.2

"K (2) • bzr(T + e 2bT)

bT(l + •' )-e ZbT( bT - ebT(

K (3)  -- &bZT(l + e- 3bT ) ,
3bT() + ' 3bT + 20 . o-bT)(1 - bT 3e- ZbT- b g +Zle X-. 3 .b) (3,.z6)

4b2T 1 + s' 4bT (3.26a)

(4) bT ZbT -3bTZbT(l + ' ) + Z(1 - e )(l'-e Ze )
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It was found in the previous section that a limit exists for the longest

period of the relay mode oscillation in the PWM system as well as in the

relay system.

When this restriction is combined with the results about the critical

gain for the relay mode oscillation we reach an important conclusion con-

cerning the stability boundary of the relay mode oscillation.

Since we know how to find p max for the relay mode oscillation and

also the boundary gain corresponding to each p, we can find out the lowest

gaist for any relay mode oscillation by inspecting every a Ks as a function of

p, where IL ranges from I to oMax' We may conclude that no relay mode

oscillation can exist below that gain, since we have covered all the possible

woades of relay oscillation.

This lowest gain min(a K ) is the stability boundary with respect

to the relay mode oscillation, and it is clearly a sufficient condition for

the non-existence of that type of oscillation.

This derivation of the stability boundary for the relay mode oscillation

shall be illustrated on the first-order and second-order plants in the

following part.

In case of the first-order plant, it has been *Aown that only the limit

cycle of two sampling periods, 66 e. , p a 1, can exist, and we derived the

critical gain o K for this mode in Eq. (3. Zi). Hence this aX is the

stability boundary for the relay mode oscillation. When the gain is lower
than this a K the system is stable as far as the relay mode oscillation

is concerned. However, it i pointed out in Chapter U that this &K eactly

coincides with the absolute stability boundary derived by Kadota using

Lyapunov's second method.

Therefore, the question will arise whether we may take the gain

boundary for relay mode oscillation as the absolute stability boundar

or not, and if the answer is affirmative, how we can justify it. This question

will be answered in the following part.

Next, the second-order plant, will b% dicussed. In this ciao, Ins

problem is not so simple as in the first-orderr system, since woewW i tQs.
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the limit cycles of two and four sampling periods always exist for any T

and the longer period oscillation can exist when T becomes shorter. However,

we can prove fortunately that & a (Ip) is the monotonically decreasing

function of IL, hence the lowest gain boundary can be obtained only by calculating

a KI for Imax which is specified by Eq. (3.14) for a given T. The proof of

the decreasing characteristic of a Ka is given in Appendix B. Thus, the

steps to follow in finding the stability boundary are first, find IL by

Eq. (3.14) for a specified T, then find o K corresponding to this gLMa x by

Eq. (3. 24); ultimately this a Ka (max ) is the stability boundary for the

relay mode oscillation for that T. The curve of this boundary is plotted

in Fig. 7.

3. 3 Gain Boundary of Unsaturated Oscillations

In the previous sections, we have derived the sufficient condition for

non-existence of relay (saturated) mode oscillation. Extension of the same

technique to the unsaturated oscillation is attempted in this section. The

problem is not so simple in this case because the pulse width may take any

value between sero and T and is not fixed at T as in the saturated oscillation.

The derivation of the equation which gives the longest period for the unsatu-

rated oscillation as well as the equation which yields the boundary gain for

such oscillation may become prohibitively complicated, since each pulse

width at each sampling instant differs from the other and they cannot be

easily calculated.

However, by introducing the sine wave approximation or square wave

approximation we can eliminate such complexity to some extent and can

follow almost the same steps as in the case of saturated oscillations to reach

the gain boundary of unsaturated oscillation.

We consider the square wave approximation in which we assume that

the pulse widths are constant and are equal to h, which may be considered

as the average value of pulse widths during one period of limit cycle.

In that case, letting

h I+ i  h
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in Eq. (2.13) yields

I IL ePT"G(P) 1 -hp VW 6.1pTdp (3.27)ci• a ' , + •iAP T  p |plefPd 3 T

Then, we can find pmu which gives the longest period admitted for the
unsaturated oscillation by testing the polarity of c IL Is and ing Iaxs

The gain boundary is given as follows by modifyina Eq. (3. 19).

a K ( ,h) 3 ph . . ... ..
I S O p)Q p(l.e".fT )  p dp (3. 2A)

pA

The applications of these two equations shall be illustrated on the first order

and second order systems.

Example 3. 5

In case of the first order system, the equation to give c IL1 , 8 becomes,

K e.bTh 1-6 -bh  I ebT

(3. Z9)

Observing Eq. (3. Z9), the same conclusion is derived as in the saturated

oscillation that the longest period of the unsaturated oscillation is ZT, and

the oscillation of l > 2 cannot be sustained in the first order system with

the square wave approximatiotL

Hence we find, for unsaturated oscillation, that

IPmax n

The corresponding gain can be easily calculated frem Sq. (3. 2S) as follows

a K (h) • bh + - aK (3.30)
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This coincides with the critical gain of the PWI4 oscillation as derived iv the
Section IV of reference 1

Example 3.

The second order system ts discussed. Under the square wave

assumption, the equation for C 1lI'sis *ssly derived from Eq. (3. 27) as

follows

X [bb 2.bh-l, 1-. "- bT  bb¢ i-,6T 6. I- "  + GPow + -el. (3.31)

Then the maximum number of samples which can be coatained in es half

of the period of limit cycle of unsaturated oscillatim is obtained by flading
the maximum P which satisfies the foluwina inequality

bbb e 1 1 -, IbT 0.1 0 (3.32)

Then IL maz(h) are calculated as a function of T and'h. In Appendlx C, the
proof is given to show that ILma for an unsaturated oscillation is always

equal to or smallor than mx of saturated oscillation.

P (h) i Pna&(T) (3.33)

This relation will be very useful for the analysis of unsaturated osclllotign

as well as for the derivation of the gain boundary of such oscillatios. The

gain boundary of the unsaturated oscillatiom is given by a Ka(h) of Eq. (3. 26)

when P& takes the value of h max(h) obtained above. Thus

a KsG ,. h) Zb h l+°ePbT (3.34)
Inl~~l~'lL " n~omol~ , bT)

where I& u lmax(h) obtained from Eq. (1. 12).

The values of a Ks*(h) awe calculated for varis h and T Od eowh is
Fix. (8 . It is noticed that a Ka(h) is very close to a K(T) or slighuy

above a K(T). as seen from the same figue.
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It can be observed by comparing Eq. (B. 1) and (5. 7) of Appendix 3
that aKs(p, T) is smaller than aKas(Ah) an long as D(a) is positive.

K8,T) aKo(j&h)

(3. 35)
if D(P) • 0

Then using the relation of Eq. (C. 1) that has been proaed in Appendix C, the
following relation can be derived.

aKs(PMa,(T), T)5 a Ks(pmax (h), T) a nKiLfp(%&.(h), h) (3. 36)

for D(P) >0

D(p) is positive for bT < 1.9.
Therefore a Ks(PAm(T). T) is the lowest gala boundary for the existence of
saturated and unsaturated oscillation.

WhenbT >1.9, D(p) 4 0
hence.

And the smallest of a K (. h) is obtained by letting h u 0 in Eq. (3. 34).

Eventually it is reduced to Zb. Therefore a K a Ib yields the lowest gain
boundary for bT > 1. 9. Combination of these two boundary curves presents
the sufficient condition for non-existence of saturated and unsaturated
oscillation of PWM systems. This is plotted in Fig. (8) and we can observe
that it is very close to the experimental data obtained by 1DM 704. We
mentioned that the pulse width of square wave approximation can be regarded
as the average value of the pulse width'duriag one period of limit cycle.
However, an6ther approach to this problirn is possible and it is explained

in the foliowing. When we find the maximum pulse-width hbma and minimum
Piulsewidth hmin during one period of limit cycle, we cam eldculM the
corresponding a Ks(h ) and a K

The actual gain boundary correspending to the actual wave shape
must lie i-between these two gains. But, we know am iI is an increasing
function of h and a Ksf, h) is an decreasing fuaction 0f 1& as well as of h.

Therefore
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Rmax (h Max) > P~max (hmi)

and

a K(IA. hms x ) C a Ks(j. hmin)

a Ke( 1 . h) < a Ks(p 2. h)

forII>jLz and D()> 0

Combining these properties we may conclude that sK c orrespoading to hwax

is smaller than the one corresponding to hmin for bT 4 1. 9. Hence we take

o Ks(hma x ) as the lowest gain for the existence of the uns arated oscillation

of which maximum pulse-width is hma . Actual gaia must be above this

value. When bT > 1.9, we take aK a Zb as tite lowest gainL

3. 4 Extension of Theories to Other Types of Nonlinearities.

The noticeable result which has been derived in this chapter is that

the method to obtain &ax and the corresponding a K. can be extended to

other types of nonlinearities.

Whether the nonlinearity is a saturating amplifier with linear region

or a quantised level amplifier does not matter, provided that they have a

complete saturation as show in F'ig. 3. We-can extend our theories to tbe

analysis of such systems

The limitation on the longest period of limit cycles for such nonlinear

systems is exactly identical with the one for the PWM system, because they

will behave Just like a relay system when the oscillation remains in the

completely saturated region. Therefore, the equation to find jimu, given by

Eq. (3. 8) ad Eq. (3. 14), is valid without any chage for the mlinearities

which have the completely saturated region.

We need a slight modification on the equation that gives the gain

boundary of saturated mode oscillation.

Let a be the tangent of the inclination of the line which combines the

origin and the edge of the saturated region. Then, as far as the satwated

region is concerned, we have the following inpatostput relations 0 nonlin ea

component,
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e' t)u 1 <Oen(0)
n

e Nt) N(en1O)] if - < hi0 ) < 1 (3.37)

u-I if • On(O) < .1

N [ 3 in the above equation indicates the particular nonlinear amplitude-

depending-function which can be specified for each case of nonlinearities.

In case of such amplitude-dependent nonlinear functions, Eq. (2. 5)

or (Z . 9 .) can still be used to obtain the responses, and the output of the

nonlinear component Eh(s) is given as follows.

I -To

Eh(s) - N(en(O) ) 1 (3. 38)

Substituting this into Eq. (2. 68) yields

C 1 I " --,PT(I... dpci ep f I PT KQ(o) N(eg+i (0) e 0'- e T )

i I + •eppT

p t=o
(3. 39)

When the oscillation is in the completely saturated mode, the nonlinear gain

factor given by N( ) will become equal to I or -1 as shown in Eq. (3. 37).

Hence, the equation which yields the responses at the sampling instants

becomes identical with the one for the PWM system given by Eq. (3. 1).

However, because of the saturation, the input to the nonlinear component

during the first half period of the limit cycle becomes as follows.

-ocis >1 for i = 0, 1, ... , a-1 (3.40)

Substituting Eq. (3. 39) into the above equation and obtaining its sum for it

from o to L-I yields

(Y CC is)

i=0

CLK (P)lloePT)f& , pT)' dp (3. 41)

p(l 4eI' )
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Hence the gain boundary for saturated mode oscillation becomes

aK a I $ GP( . OPT)g(p,1 pT) dp (3.42)r Tp(l + op PT )
r

It is easily observed by comparing the above equation with 4. (3.19) for

PWM systems that a Ko for amplitude-dependent nonlinearities caa be

obtained by multiplying 1/ T to a K for the PWM system.

This multiplied factor l/T gives an inclining characteristic to aK s as

shown in Fig. 40), different from the flat charaeteristic of aX a for the

PWM system which is shown in Fig. ( 71). a Ko( AMC u ) for the saturatiag

gain amplifier as well as for the quantlsed level amplifier are plotted in

Fig. (10) and (11). They give sufficiently close gain boundaries to the

experimental data on IBM 704.
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CHAPTER IV

Stability of the Equilibrium Point

It was shown in reference 8 that the stability of the limit cycle is
tested by examining the eigesvalues of the characteristic matrix, which
consists of the first partial derivatives of the variables. Also the equilibrium

point can be regarded as the limit cycle of Go sampling period.

The basic steps to test the stability of limit cycles which are gives

in reference 8 were presented in Chapter 1. The basic assumption

of this linearination of the nonlinear difference equatiom is that the pertur-

bation around the limit cycle or the equilibrium point is sufficiently small.

However, the actual limitation on the magnitude of the perturbation which

permits such appyoximation is not specified explicitly. We will indicate

that such approximatiom becomes valid by evaluating the error which is

brought about by linear approximation.

We will derive the total linearisation technique for that purpose in

general form. It is known that the difference equations of the response and

its derivatives for linear sampled.data systems are written in the following

matrix form. Z1

c.l ( J ] [ Q(J) ] (iM I + (J) J , .. ., q.l (4.1.)

where Q) consists of system constants and Q ) represents the effect
rn

the input, and q is the order of the linear plant. Similar representation is

possible for nonlinear sampled-data systems, using a vector, X3 . for the

system variables and a nonlinear vector N(Xn) for the output from the nonlinear

component.

Xn+lj a (] Xn ] + N(x n ) ] (4.2)

and it is assumed that X and Xn+ 1 is on the equilibrium point, 8. which

is the origin in most cases. Then if we let the components of the vector.

Xne be xln x.. ... , xq,, these xj correlpols c ton i Eq. ( 4. 1).

Also the characteristic matrix 1Q of the linear ptant correspmds to

in Zq. ( 4. 14-

Letting T a with its compement Ya' Yaw ... " y q be the small
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disturbance of Xn, Eq. (4. 2 ) is rewritten when such disturbance Yn is
added to X .

(Xn+l +y n 1 )] - 10](Xn + Yn )] + N(Xn + Yn) ( 3)

or

Xn+I ] + Yn+I] a [Q] Xn] + 1Q] Yn] + N(Xn+ Yn)] (4.4*)

However in most nonlinearities, the output of the nonlinear component is

only the function of input itself, and is not the function of its derivatives.

Therefore,

N(Xn) = N(xln) - N(-Cn) (4.)

In that case, all the partial derivatives of N(Xn) vanish when it is differentiated

by X.n for j 4 1. Hence N(Xn + Yn ) can be expanded into powers of zIn.

by Taylor expansion

N(X + N(Xn + ON I 2 N Y , +*, (4.6)n~~ ~ ~ ~ ... (4.6in+ 7-&Z7-i
nIn

where all the partial derivatives are evaluated at Xn a S0 ' Denoting the

summation of all the terms as N'(Yin) except for the first term in the above

equation. it becomes

N(X n + Yn ) a N(X n ) + N'(yln) (4.7)

Substituting this into Eq. ( 4. 4) and using Eq. ( 4. z) yields the difference

equation of the perturbation around the equilibrium point.

Yn+] I [Q] Yn] + N'(Yin)] (4.8)

Then denoting the summation of all the terms as N1(yin) except for the

first two terms in Eq. (4. 6A), we have

N'(yln) ON + N 4.9)
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Substituting this into Eq. (4. 8) yields

ln+1] t Q] 1 ] + IL Yin I + NIYin) ]

-in] + N"(y 2 )3 (4.10)

where the component La the first column of Am is the sum of IN18% and

the corresponding term in 0. and the Other components of tWo matrices are

all identical.

SNS

a0 ii € u Z# ... , q (4.11)

It is observed that (An] given above is identical with LA a of Eq. (1,14) in

the previous section. However, Eq. ( 4. 101 has no approximatiom whereas

Eq. (0.14 is the first approximation of Eq. (4.tq. neglecting nonlinear

vector, N"(y1n) 3. For certain types of nomlinearities it can be proved

that N"(Tn) is finite inside certain region S, which is a vector space of 1n"

In other words, we can find such Rn and R(with their components

Rin and RV. respectively) that

N'i(Yln) a kiRinyln for all i (4.12)

and

O< Rin <R i for all n and if .8 (4.

R .is a positive finite number and so is Rin. The number k with its cemponent

ki is introduced for mathematical convenience to represent the sip and

gain factor and also is a finite number. The& substitutig Eq. (46 U) into

Eq. (4, 10) yields

ySl [An)]X 3 + k RU Yin

where the cmpomnt in the first column of Da is the am of The correspeading

component of An and the component of kR3 , and the other compeait. of
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two matrices are all identical.

b it ali + kiRin

ON
Q n + k R

ba a a Q for j 2, ... q (4.15)

This lineariaed difference equation in its form shown in Eq. (4.14!) is
essentially a nonlinear difference equation because the matrix [s. is a

nonlinear matrix containing the nonlinear factor, Rn . However, Eq. (4.14)
is derived without introducing any approximation and is valid inside the

vector space S for all n. And we know that Rn is bounded as seen in Eq.

(-4. 13) for all n, hence, applying the stability criterion to the matrix

(Bn] in the same manner for the linear matrix, we may derive cortain

conditions for the stability of the differeace equation of 'Eq. (4. 4.). aging

the boundedness of i n . When the condition obtained abowe io satisfied,

all the eigenvalues of (Bn] lie inside the unit circle for all a.
Although this condition does not necessarily guarantee that an

disturbance Y --- 0 as n --4 co, it gives stricter restriction on the stable

region than the condition on the incremenally linearised matrix [AL]
which is derived in the previous section. Also, by evaluating explicitoly
the magnitude of the error factor kR. which is caused by the linerlaatIt,
we can estimate the range of S in which the totally linearised matrix

[Bn] can be regarded as a time-invariant matrix [B]. Within that region,

the test on the single matrix [B] ensures the stability of the equilibrium

point. Then, if [Bn] is a stable matrix for all a. i. e.. if the eigenvltaes

of I Bn] lie inside the unit circle, the equilibrium point is stable within
the region that the matrix (Bn] can be regarded as a constant matrix [21.
Such a region can be found by evaluating the magaitude of the error vector
kR and by comparing it with other time invariant coapemeats of the matrix

B.
n

Example 4. 1

The total linearisation method is illustrated on the PWM system and
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its usefulness will be proved. The linear plant chosen are again first-
and second-order systems.

(1) First-Order System. For the first-.order system, the
difference equation is

c * c ne -T+ 's V) 'bT (e .-1) (4.16)

where
h n -1(n) c (4.17)

Obviously X~ n aXln C nand 0 ae' and

N(~ ~) K -bT bbn
nq n a;vcIs-(n) e (e )(41

in Eq. (4. It). The equilibrium point S 0 a 0. The difference equation of
the perturbation ynaround the origin becomes. from Eq. (4.i-Q) and (4. 11)

Yn+l A Ay n + N1"(y n) (,

where

An Q +SN 0 2 bT -bT (420

and

N1(y ) y ~~n c ScWn

K - ;y(n)e' L t(- (n) yn)i 4

i=2

By Eq. (_4. 12)

N"1(yn ) a kRn~yn (4.92)

where kc is chosen as follows

kc a -&K

Then equating Eqs. (4* 2i)and (4.20, wefind Rn
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.QbTI- J -cL b 14~n) ynV~ W42

1.2

It is noticed that -S(n) Yn in always positive because y~n) a -1 wham Y a 0
and n(a) a +1 when Yn < 0. Also I&y,.I will not exceed the sampliag period
T because of saturation. Thus

0 < -s(n) yn b < bT (,4.241

Then, using Eq. (4. 23) and the above result, %3 is bouaded as follows:

0R < aT I(bT) W

uftz
G ebT I' [ e b T . I - bT] (4. ZS)

•R

The totally linearised difference equatiom of the perturbation arouM the
origin is from Eq. (4.14)

Yn•! a Bayn (4. 26)

where an is obtained from Eqs. (4.15) and (4. 20)

n a As + kRa + 1l a K)*ObT .- C IK (4,27)

Eq. (4. 26) is stable if
Inns ( , (4. 2s)

Uuabtitutiag Eq. (4.27) into the above

e'bT(1 -K) X I (4. )1

This is rewrittea as follows:

1 bT bT • bT -  bT
4.so + aKoo + aK3 l +a X(60 + *Ra) 0 14.3)
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The content of the first bracket is positive since a K and R. are non-negative

quantities. Hence, the stability condition is reduced to

1 + -bToK < l$.31
Rn + e'bT 

.31,

Rn is not a constant, but is restricted between 0 and R for all n by Eq. (4.25).

Therefore, the maximum value of Rn is substituted into Eq. (,4.31,) in order

to obtain the lowest boundary of a K. Thus

aK < I+*bT Z bT I-bT (4.32)
R+-DT I CT DTo

R+e 1-e

Various important results have been obtained concerning the stability of
the first-order PWM system. -Reviewing and combining thefe reslts, a
conclusion of the stability of such system can be derived.

In the first place, it is proved that the longest period of relay mode
oscillation is two sampling periods, il. In the second place, the gain
boundary corresponding to I = I is obtained.

SKs(P = 1) a bT +-bT
l-e

Thus, we may state that no relay mode oscillation can exist below *Kf 1).
In the third place, it has been proved that the origin is stable for any pertur-

bation below the gain which is given above. This fact eliminates the possi-

bility of the existence of PWM oscillations or any other irregular oskillations

below a Ks(p = 1).

By these three steps, we could have successfully eliminated the
existence of all the types of oscillations below a KO4. a 1). On the other
hand, it has been shown in the previous section that the relay mode oscillation

can exist above a KO(p : 1) and is stable. Hence, we have show th

a K < o Ks v 1) is the necessary and sufficient condition for the absolute
stability of the first-order PWM system.
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(2) Second-Order System

Next the case of the second-order system will be discussed. The
transfer (unction is given by Eq. (ILi 4 ) as

KKG(e) -,(Sb

and the difference equations will be derived of IMUaDW

K eb(T-hn) bTCn+ l a *(a) ( bhn - e-T) Cn n • b

b

X f(c d ) (4. 3 3)

K(n) K eb(T-h - e-bT ebT

dE ~) (e )+e 0 4n

•(c no n) (4.34)
Then the conponets matrix (AAI of Eq. 044t Is given by Eq. (1.15).

SAO)]• I a l  l

La21 a U (4.35)

where

I1 faKb(Thn)

aa 111 (4.30

a of I - ebT

12 I]r -D (4.37-)
n

&21 = • -* Ke (4.38)

2 .'!L eb (4.39)
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Let Xln = Cn , x2n 2 4no and Yln 0 Y2n be the corresponding perturbations,

and the equilibrium point, So, be the origin. Then [Q] Xn ] of Eq. (4. 2 )

represents first two terms in the right hand side of Eqs. (4. 33) and (4. 34)

and N(X n) represents the last terms of two equations. Obviously N is

solely a function of cn since hn = -a V(n)c n . The components An f Eq.

(4.10) are given by Eqs. (4. 35) to (4. 38). Choosing k1 z aK, k2  -

in Eq. (4. 12) we can find Rn and RZn.

N'(Yn) a KRnYn N() (4.40)1 Yn K~yn V Yln
i=2 n C =0n

and

N2(Yl n )  Z KRnYln 1 r, CMi Yn 14 1

i=2 8 n c=0

Then the limiting value of Rln and R2 n are obtained.

From Eqs. ( 4. 31 and (4.40) we have

a Keb c

KRn a (-a b-t(n) (4.42)

i=2

Because of the saturation.

0 < -a b'y(n)yIn < bT (4.43)

Hence

CD
I -bT ,I

0Rln<- e r (bT) l

i=Z

e-bT bT= -bT-l)
b T.

R, = R/ b (4. 44)
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where R is given by Eq. (4. 2S). Similarly from Eqs. (4.34) and (4.41)

-bT I (bT)i-
- Kn u -Ke b (445)

Hence, referring to Eq. (4.44)

0 <R n = bRn I R (4.46)

The totally linearised form is given by Eq. (4.14')

rn+l ] " (ln] Yn] (4.47)

where the components of Bn are given by Eq. (4.15) and Eqs. (4.35) to (4.38)

all + aKRIn 1b11bI

421 a KRznl 22. 1 2)

(4.48)

[an I is stable if the following two conditions are satisfied by iS components. z

L (I+ bllbZ 2 - bl 2b21 )(1 - b1lb 22 + b12b 21) > 0 (4.49)

1.(I + bujbZZ - blbl 2 l z)1 b1z - b l,! - bZZ) >, 0
.lbb 3  b1 2 .1 +bl + b 2 Z)( +b b -b b b 11

(4.50)

Condition I is tested first, by using Eqs. (4.35 4 to (4.38) and 14.48,)

bllb22- b1221 e bT + CLKRln (4. 51')

The content of the first bracket is clearly positive since Rin is a nonenegative
quantity by Eq. (4.44). Hence, the content of the second bracket must be
positive to satisfy Condition L

1> 0bT + aKRIn
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or -bT

K'Kin

The above inequality is satisfied for all n, if Ri is replaced by its maximum

value which is given by Eq. (4.44)

UK < 1 - bT (I -0ebT)b~zT
R I - bTe' s T  oesb T

a Kd (4.53)

Thus Condition I is satisfied for all a K < a K d .

Next, Condition U is investigated. Using Eqs. (4.35) to (4.38) and

(4.48)

I + bllbz 2 b12b 21 (bll + b22)

-( - b T ) > 0 (4.54')

and, also

I + bllb22 -b bl + bll + b 2

2(1+ e-bT )  K -bT ) + 2*KR (4.551)

and this must be positive to satisfy Condition U. Hence,

I bT -bT(5
K E - 2Rn) < 2(1 + )4,56

This inequality is satisfied for all n when R is replaced by its minimum

value which is equa1 to sero by Eq. (4.46). Thus.

oK < Zb 0. + 0 K n(4.57-)

I -bT c

It is observed that this a Kc is identically equal to the lowest gain for the

PWM oscillation of M w 2 which is obtained in jrerence I When these two

conditions are combined we may state that the origin is stable if



a K < min(a c , aK d)

and if the system remains within the region that the matrix [Bn] can be

approximated by a tin.e invariant matrix IB].

Thus we could have succeeded in ellminating all the regular or
irregular oscillations around the origin.

In the first order system, the test on [Bn] gave the absolute stability

boundary cK .

In the second order system, we could have derived a Kd from Condition
I which could not have been obtained from the incrementally linearised

matrix [An].
We have mainly discussed the saturated oscillations in Chapter II,

and the small oscillation has been studied in this chapter.

Combining the results obtained from these two different approaches will
give a good means of solution for the stability problem.

a K( Imax) and the experimental stability curve obtained by IBM 704
are shown in Fig. (8 ). Also min(a Kc. a Kd) are plotted in Fig. (k9)

together with the experimental curve. It can be observed that both curves

give sufficiently close values to the experimental data.

The stability condition obtained by Lyapunov's method 6 is added to
these figures for the sake of comparison.
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CHAPTER V

CONCLUSION

5.1 Conclusion

Periodical oscillations within nonlinear sampled-data systems,

as a whole, has been investigated in this report.

The fundamental equation that gives the exact feature of limit cycles

will be very useful for the precise analysis of such systems. Oscillations

which are almost periodical can also be treated by this equation for an ap-

proximate description of their behavior.

Thus the fundamental equation and its modified equation can be very

powerful tools in investigating the steady state of nonlinear sampled-data

systems. When the periodical input is applied, the same equation yields the

desired responses, and the results are superior in their precision to the one

obtained by the describing-function method. They are based on the transform

method, and can be applied for any order of the plant transfer-function. More-

over, they can be used for any shape of nonlinearities, not necessarily PWM,

but also relay, saturating amplifier and quantised level amplifier.

Similar approaches to the problem d limit cycles are possible as
13

shown by Shao Da Chuan by means of the canonical-form representation or

by H. C. Torng"4 means of the discrete-function method. However, in these

studies, setting up of state equations or difference equations for each case is

always required and the size of system equations will become larger and

larger when the order of the plant increases.

On the other hand, in our transform method, every equation that gives the

exact feature of responses can be derived from one fundamental equation

which is common to all the plants and to all the nonlinearities.

The steps that must be followed are just substituting the actual form of

the plant transfer-function into the fundamental equation and giving considera-

tion to the particular type of nonlinearities.

The stability problem was another important topic of this thesis. As

was mentioned in Chapter I, our attitude towards this problem is microscopic

in contrast to the macroscopic approach such as Lyapunov's second method.
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Eliminating the possible existence of all saturated and unsaturated

oscilations, the s~fficient condition for the non-existence of such oscullations

ta tie PWM system has been derived and ts compared with the experimental

results. as well so with the sufficient condition for the asymptotic stability

in the large as derived by Lyapunov'a second method.

The slsility boundary derived by our method gives a closer criterion

for the experimentl results than that obtained by the Lyapunov method. The

reason for this can be attributed. in the first place. to the difficulty in finding

the beat Lyapunev function for the specified types of nonlinearitp; in the second

place. te thke fundamental property of such a macroscopic method wherein one

Vasst expect that the worst case might happen, without paying attention to the

limnaton on oscillations inside the system imposed by the operation of the

nonlinear luncHes.

We would never deprecate the approach from the macroscopic point

of view. We might even expect that the straightforward method to find the

best Lyapanov function to give the necessary and sufficient condition for the

stability could be establlhod. However, we believe that out localised

approach is also useful in designing nonlinear sampled-dats systems.

It is frequent that the system designer wishes to eliminate the particular

modes of oscillatles, especially of the fundamental frequency (half of the

sampliag frequency) or of a few of its subharmonics. Or he may attempt to

lludhate only the ocillatioens of large amplitude which probably remain in the

satrated rogoas. In such cases, the method that we have established is

drectly applicable; and the designer will obtain the sufficient and satisfactory

information on his problem without wasting time in the struggle to find a

cempuoheasive stability condition that may lead to an cxcessively conservative

result.

The medlfication of Neacelsethod to test the stability of an

oquilibuiam pel is atompted. It is worthwhile to notice that the stability

beundary obtained by this method yields the closed criterion to the euperio

mntal result as shown in Tit. 9

EMaphasis is placed n the PWM system In this thesis, although the

&aayeis as abys been etended to other types of nonlinearilies.
I. As . as the analysis is concerned, no approxinatien Is introduced,

such as smllsipal sondition or sine-wave approximation. The PWM

aereller is a very sensitive device while it is operating In the unasaftrated

reogiem also by means of its saturating property it prevents the Via* from
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-receiving an excessive influence from the input.

We observe in rig. 9that the operating region (stable region) of
the PWM systems is rather uniorm, due to the flat characteristic al the
stability boundary. Therefore, the range of the choice of sampling frequecies
is very wide. On the other band, in case of other nonlinearities, the choice
of sampling frequency is rather limited because of the inclined characteristics
of the stability boundary (Figs. 10, 11. The PWM system is superior to the
relay system in the sense that the former has a stable region while the lafter
can never get rid of the oscillations of the fundamental frequency and its
first subharmonice. Also it is observed experimentally that the PWM system
reach*@ the equilibrium state considerably faster than the other types ad
noulinearities such as the saturating amplifier with linear region, starting
from the same initial conditions. From this fact, we my state that the
PWM controller is a maore sensitive device than other nonlinear, anilituds-
dependent controlling devices. And this will offer an advantage to the optimal

control by means of the PWM system.

S. 2 Suggestions for Future Work
When the nonlinear sampled-data system is represented by a set of

nonlinear difference equationp. it may be reduced to a totally linearised form
as follows:

where Y(ng is a vector representing the state at the nth sampling instant and
(S, j is a totally linearised matrix and is a nonlinear function of Y(z4

We may find a certain region of Bn where B. is stable, i.. , the
eigenvalue of [3n) lies inside the unit circle if Y(n))bslongs to the certain
vector space S.

It was pointed out by IKodama 23that it is false to may that the equi-
librium point is asymptotically stable in the large if (Ra ] is stale for all
the points of state space. The above fact is demonstrated by his counter
sunMpls. by shaping the nonlinear gain curve for that purpose.

However. we believe that under certain conditions the above will hold
true. And it is worth while to look forward to such conditions. This
possibility Io supported by the following fact. When the matrices [a,
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and [B 2 ] are stable, [ S ]2 and [B 2 ]2 are also stable by the Frobenius

theorem. However, nothing is assured on the stability of the product matrix

[3 1 ].[B. J. But these two matrices are closely related to each other by the

nonlinear system equation. If this relationship is precisely investigated, we

may find the conditions under which (B1 ].[Bz] becomes also stable. And it
may be extended to the case when the number of multiplied matt ices is

increased. possibl to infinity.

Also we noticed that various conclusions that are derived for individual

matrices cannot be applied to their product at all. In general, we have to

carry over the tedious multiplication of matrix elements and we usually

find a very different conclusion from what we expect from the individual

matrix. It will be very helpful if. for example, the stability criteria on

the individual matrix can be extended to the product of matrices without carrying

over the actual matrix multiplication process.

Another suggestion on the study of nonlinear sampled-data systems is

the appropriate use of high-speed digital computors. Nowadays, the digital

computer is extwn sively adopted as a controlling device of sampled-data

systems. However, it can be used for simulating the sampled-data system

in its programs. We can perform any type of experiment on sampled-data

systems that are incorporated in programs of digital computors in the form

of difference equations.

We believe that a complicated conclusion obtained by certain theoretical

investigations can be accepted if it is formulated for suitable usage of digital

computors, since the digital computor can give the desired data instantly

when it is wanted. It will be advisable for researchers in sampled-data systems

always to keep the possible utilisation of digital computors in mind.
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APPENDIX A

EXPERIMENTAL WORKS BY DIGITAL COMPUTORS

In order to verify the theoretical works developed in this reporl high-

speed digital computore are used extensively.
Because of the bhsic property of the sampled-data. systems that has been

the main subject of this thesis, the digital comnputor is well fitted for

synthesising the system and performing the experimental works.

The function of the closed loop nonlinear sampled-data system as shown

in Frig. 41) in completely represented by a not of nonlinear difference

equatiens as Eq. (4.16) or Eqs. (4.33) and (4.34). These nonlinear difference
equations can be easily incorporated into programs of digital comiputore

because of their iterative properties. Fesposses at the end of every sampling
* period can be used as the initial conditions for the following sampling

Instants; this operation is conveniently performed by using the transfer
command and the index register in digital computors.

Setting of initial conditions is quite arbitrary and the accuracy at the
computation Is incompatible with that of analogue computors.

A series of experiments is performed using Beadix 15 to verify the

existence ad behavior of limit cycles a derived in Chapter U. Typical
oscillations of PWM mode or relay mode are observed when suitable gain
Is gives to the system.

&K c or &K, are accepted as boundary gains and a conspicuous dif-
fereace of behavior of responses is observed on both sides of these critical
gains.

Finally, a series of stability tests is performed in order to endorse
the various stability coundaries obtained in Chapter Iii and Chapter IV.
A wide range of initial conditions (40-60 points distributed on the phase
plane) is selected, and for every initial condition the responses are cal-
culated up to 100-200 sampling instants in order to examine the convergence
oflreslrjmsss.

Varying the gain a gradually over the critical regions. the border line
betWeen stable and unstable regions is traced with good accuracy. These
tests are repeated varying the sampling period T and the results are
plafled as a function of the ampliag frequency a shown in Fig. 48)
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and (9.

As an example, the flow chart of the program for the 8CO,4 Ordet

PWM system is shown in Fig. (12).

This is programmed for the purpose of obtaining the respeses of

the second order system at every sampling instant when the initial eoa-

ditions are specified.
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APPENDIX B

PROOF OF DECREASING CHARACTERISTIC OF a K9(p&)

The objective of this appendix is to prove the gain boundary a Ks for

3turated oscillation is a monotonically decreasing function of IL. When

aKs( ) is given by Eq. (3. 23) for the second-order system, it can be rewritten

as follows.

K (i) 1+2(1-c I + [(l - e'bT)2b [ 1 -(b.1

bILT(l + ' )

In order to prove the decreasing characteristic of (,e4) it is enough to

prove the increasing characteristic of the function inside the large bracket of

the denominator of the above equation.

Let

D(1l) f(, -bT) (B. 2)
bpT(l + eO T )

then, the incremental difference AD(p) is given by

AD(p) - D(p+l) - D(p) (B. 3)

If AD( ) is positive for all pA. D(L) has a monotonically increasing characteristic.

Substituting Eq. (B. 2) into (B. 3) yields AD(p)

i)(l+e'1LbTIf k+l, -bT) - (1+1J1 +e-(1+l)bT)f(&to -bT)

bp&T(l + e b ) • b(g+l)T(le -I (+1JbT)

(B. 4)

f(p, -bT) is obtained by substituting -bT into the place of pT in Eq. (3.17)

or in Eq. (3. 18). When this is substituted into Eq. (B. 4) the numerator of

AD(p) can be reduced to the following form.

Numerator of AD(I&) z 2 Ld(M+,bT.,-e( 2* l )b T
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This is obviously positive for all It which is a positive integer.

Therefore

ADIIL) > 0 for * 1,2 3,... (if. ')

Thus we could prove the monotonic increasing property of Di), hence the
monotonic decreasing property of a (IL). • A similar property can be

proved for a XI(p) of unsaturated oscillations. It is given by Eq. (3. 34) and
is rewritten as follows

Zb (37)+ 2(-e' bT ) ( C -1 ft0 bT)

- pbT(l + )

The function inpide of the large bracket af the denominator of the above

equation is related to D(IA) of Eq. (B. 2) as follows
•bho

Function inside bracket e - 1  
(. )

Therefore, when D(p) has an increasing property, naturally the above function
possesses the same property, which makes &KAL, h) have a decreasing

property.

64



APPENDIX C

PROOF OF THE RELATION max(h) < I&max(T)

In order to prove the relation that

I0m x (h)C p max(T) for 0 < h < T (C.l)

where p max(T) is tie maximum positive integer that satisfies the faoqewulity
of Eq. (3.14) and pmax(h) is the maximum positive integer that satisfies the
inequality of Eq. (3. 33). We denote the left hand side of Eq. (3. 32) as 8(h)

g(h) . g1(h) - g2 (h) (C. 2)

where

bh91(h) u -(IL.z) (C. 3)

92(h) u (e b-l)[ 1  ibT (C. 4)

1-e 1

If the following relation is proved,

g(h) Z g(T) for h < T (C. 5)

then it implies the relation of Eq. (C. 1) since g(h) is a monotonically

increasing function of t.

From the following relation

2(h)-lh 1+ + ... h
I+- hT- ..

we obtain

> 1(h) >Z(h) (C.?)

Let

g1 (h)
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•2 (h) > 0 (c.9)

Then

0< (p

Therefore

g1(h) - g(T)- (z(h) - g2 (T)) a (ls(T) - g s(T) ).- ( 1(T)- g 2 (T) )>0

(C. 10)

since

91(T) - SZ(T )  g(T) < 0 for & ma

Eq. (C. 10) implies Eq. (C. 5), thus the proof has been completed.
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